
0018-9162/97/$10.00 © 1997 IEEE August 1997 49

Applying Software
Product-Line
Architecture

M any organizations today are investing in
software product-line architecture—for
good reason: A well-executed architec-

ture enables organizations to respond quickly to a
redefined mission or to new and changing markets.
It allows them to accelerate the introduction of new
products and improve their quality, to reengineer
legacy systems, and to manage and enhance the
many product variations needed for international
markets.

Software architecture is the structure of the com-
ponents of a program or system, their interrelation-
ships, and the principles and guidelines governing
their design and evolution.1 Sharing a common soft-
ware architecture across a product line brings a core
set of knowledge and assets to the development
process. Product-line architecture not only reduces
the complexity and cost of developing and main-
taining code, but also streamlines the production of
documentation, training materials, and product lit-
erature.

However, technically excellent product-line archi-
tectures do fail, often because they are not effectively
used. Some are developed but never used; others lose
value as product teams stop sharing the common
architecture; still others achieve initial success but
fail to keep up with a rapidly growing product mix.
Sometimes the architecture deterioration is not
noticed at first, masked by what appears to be a pro-
ductivity increase.

To learn what factors determine the effective use
of software architecture, we looked at Nortel
(Northern Telecom), a company with nearly 20
years of experience developing complex software
architecture for telecommunications product fami-
lies. We identified six principles that help reduce the
complexity of an evolving family of products and
that support and maintain the effective use and
integrity of the architecture. Nortel’s experience pro-
vides compelling evidence of software architecture’s

benefits and risks and shows the importance of orga-
nizational behaviors.

THE NORTEL STUDY
Nortel’s leadership in digital switch architecture

enabled the company to capture US and interna-
tional markets. After the 1984 breakup of AT&T,
only Nortel could provide Bell operating companies
with the capability to offer customers equal access to
long-distance carriers. The company’s high product
quality allowed it to become the first digital switch
supplier in Japan.

After nearly 20 years of successful use, however,
the digital switch architecture began to show signs
of needing renewal. In the late 1980s, the company
considered a major restructuring of the architecture,
but the CEO decided to wait. This decision had
severe consequences, with a reduction in product
quality and a tripling in the length of release cycles.
Nortel later attributed these problems to architec-
ture breakdown.2 The company took action and
rebounded. After reporting substantial losses in
1993, Nortel posted profits of $408 million in 1994,
$473 million in 1995, and $623 million in 1996.

In our study we realized that technical factors—
the focus of most research—do not by themselves
explain the success of a product-line architecture.
Only in conjunction with appropriate organizational
behaviors can software architecture effectively con-
trol project complexity. These behaviors have been
documented in studies of software reuse3,4 and in
systems architecture,5 but our purpose was to iden-
tify these behaviors for software architecture in a
long-term effort to build large-scale, mission-criti-
cal systems—hence our choice of Nortel.

Although our effort was an exploratory case
study, we followed a rigorous methodology.6 Our
first step was to assemble a group of 16 advisers with
broad software architecture expertise, including
leading figures like Grady Booch and Robert

Software product-line architecture is a powerful way to control the risks
and take advantage of the opportunities of complex customer
requirements, business constraints, and technology, but its success
depends on more than technical excellence.

David Dikel
Applied Expertise Inc.

David Kane
Applied Expertise Inc.

Steve Ornburn
Nortel
(Northern Telecom)

William
Loftus
WPL Laboratories Inc.

Jim Wilson
Applied Expertise Inc.

C
o

ve
r

F
e

a
tu

re

50 Computer

Charette and representatives from such organizations
as Hewlett-Packard, IBM, NASA, the Software
Engineering Institute, Texas Instruments, and the US
Navy. These advisers, especially Booch, helped us
develop a set of six organizational principles believed
critical to the long-term success of a software archi-
tecture:

• Focusing on simplification, minimization, and
clarification.

• Adapting the architecture to future customer
needs, technology, competition, and business
goals.

• Establishing a consistent and pervasive architec-
tural rhythm—regular architecture and product
releases that help coordinate the actions and
expectations of all parties.

• Partnering and broadening relations with stake-
holders.

• Maintaining a clear architecture vision across the
enterprise.

• Proactively managing risks and opportunities.

Our next step was to conduct our research and see
how these principles fit Nortel’s experience. We stud-
ied the business unit at Nortel that builds a family of
digital loop carriers (DLCs)—products that provide an
intermediate connection between central office
switches and end phone systems. Over several years,
the 80-person DLC group had successfully managed
architectural complexity through a series of software
releases. In fact, the group had been able to reduce cycle
time by 45 percent, still maintaining high quality.

The DLC group’s products share a common soft-
ware architecture and hardware platform. In the two
releases it makes each year, the group adds or changes
3 to 5 percent of the software’s 4 million lines of code.
The architecture was constructed in several layers
with large-grained components, some of which had
been developed by other Nortel organizations for
other telecommunications products. A subteam man-
aged formal customer-supplier relationships with the
groups responsible for this reused software.

We visited the Nortel facility twice, collecting infor-
mation through interviews, documentation reviews,
quantitative data analysis, and observation. The inter-
viewees ranged from engineers to directors, and
together they had hands-on experience with 95 per-
cent of the architecture’s components. Also, many of
the interviewees had worked with architectures in
other departments and were able to put the DLC
group’s work into perspective.

In fact, a number of the engineers we interviewed
had had long-term involvement with Nortel’s digital
switch architecture. The collapse and revival of that
architecture profoundly affected them, and they con-

tinued to apply the lessons learned then to their pre-
sent work with the DLC group. One example is the
practice of cloning—the duplication of an architectural
component and its maintenance by a separate owner—
which is seen as both a symptom and a cause of archi-
tecture deterioration and is now frowned upon.

While cloning had offered a means to quickly
develop new features, it often had far-reaching conse-
quences. Duplication of code greatly complicated
product tracking and management. It also dramati-
cally increased the maintenance burden of each prod-
uct and reduced the possibility of reusing externally
maintained components. Even with a world-class con-
figuration management toolset and process, Nortel
was unable to halt the deterioration of the architec-
ture without first addressing organizational issues.

After gathering our information, we classified and
analyzed it according to the principles. In this way, we
were able to verify that we had answered all our ques-
tions and could thus see how each principle applied
to the DLC group’s experiences. We also incorporated
data we had collected that compared the organiza-
tion’s performance with industry norms and with the
organization’s historical performance.

Finally, we held a workshop for the advisers where we
presented our results. This gave them a chance to confirm
our findings and add perspectives of their own. Then,
after a review by Nortel, we finalized our findings.

THE PRINCIPLES
In our collection and analysis of the data, we asked

certain questions of each principle: Is it critical? Is it
actually done? If so, how? In what context? How does
it contribute to the group’s success? How does the
principle relate to other principles? How does it affect
complexity?

We realized that the principles affect not only archi-
tecture, but also system complexity and its negative
consequences. Two principles—focusing on simplifi-
cation and adapting for the future—directly address
complexity, but we found evidence that to one degree
or another all six principles affect system complexity.
In fact, we were surprised by the influence that some—
such as establishing a rhythm and partnering with
stakeholders—had on complexity.

In the DLC group, we found that some principles
were applied informally. By design, management kept
documentation illustrating the principles to a mini-
mum. While this approach has proven to be effective,
it requires monitoring and is vulnerable to changes in
the organization or its customer base.

Focusing on simplification
One study adviser, Booch, has written that “a ruth-

less focus on simplification, clarification, and mini-
mization” is essential for a successful large software

A well-
executed
architecture
enables
organizations
to respond
quickly to a
redefined
mission or to
new and
changing
markets.

project.7 We found evidence that the DLC group
strove to define minimal characteristics and build them
into the core elements of the architecture. Engineers
were encouraged to simplify existing and legacy code,
being rewarded with recognition, pay increases, and
promotions. Managers and component owners mon-
itored churn (the addition and modification of code)
and the complexity of interfaces, keeping lists of areas
for possible simplification. We found, however, that
simplification did require a compelling business case
based on the maintenance cost and risk of failure ver-
sus the effort and risk to simplify the component—as
well as someone to lead the effort.

There were several ways in which complexity grew.
Figure 1 illustrates how a simplification effort, when
focused on a single driver, can be applied too much or
too little. The figure shows the results of two oppos-
ing drivers—delivering features visible to end users
now or building and maintaining shared architecture
features for the future—and their ideal balance. Figure
1a illustrates the situation in which a group tries to
create an architecture that is too flexible—one that is
intended for a wide variety of loosely defined uses.
The resulting components will be too general, too full
of unneeded features, and too slow to be useful.
Engineers would then bypass these components, intro-
ducing more specialized and more efficient alterna-
tives. Figure 1c illustrates the opposite situation, when
a group tries to quickly fashion point solutions for a
variety of customers, which results in a tendency to
clone large chunks of code. By focusing on simplicity,
however, the DLC group found a sensible and prof-
itable balance, an ideal illustrated in Figure 1b.

But how do you find a balance? There is certainly
no point in simplifying by chopping away the most
critical feature. A key to the right answer lies in
Booch’s phrase: the solution must be clear and mini-
mal as well as simple, a process that is illustrated in
Figure 2. When simplification focused on delivering
customer value and achieving business goals, the
chances for success increased. Another key is to ensure
that each of the remaining five principles are applied.

For example, focus on partnering should ensure that
you don’t get rid of a feature that is critical to a part-
ner’s business unit.

We did observe limits to simplification. As sup-
ported by W. Ross Ashby’s concept of requisite vari-
ety,8 there is an appropriate level of complexity for
software architecture and its supporting processes.
Requisite variety suggests that a system should be as
complex as its environment. If the software architec-
ture becomes more complex than its environment, it
may become too expensive for the organization to
support. If some facets of the software architecture

August 1997 51

Minimization

D
es

ig
n

O
rg

an
iz

at
io

n

Pr
oc

es
s

Customer
values

(a)

(b)

(c) Simplification

Clarification

Figure 2. Chances of
success increase
when developers (a)
clarify the problem
they are trying to
solve and then (b)
minimize and (c) sim-
plify the solution by
focusing on delivering
customer value and
achieving business
goals.

Figure 1. Simplifica-
tion requires balanc-
ing the tension
between the needs of
current and potential
users. (a) An architec-
ture overly focused on
future needs; (b) a
well-balanced archi-
tecture; (c) an archi-
tecture overly focused
on immediate needs.

Supported
by clones

Number of end-customer visible features (wider = more)

Number of shared architecture features (wider = more)

(a) (b) (c)

52 Computer

are oversimplified, then the organization may not be
able to respond to a diverse set of customers or to
marketplace dynamics.

Adapting to future needs
In the course of the study, we were not able to iso-

late many predictive activities such as forecasting mar-
ket and technology trends that were specific to
software architecture. However, the group did show
that it had learned how to balance architecture devel-
opment between current customer needs and antici-
pated future needs. Sometime earlier, another Nortel
business unit had set aside 10 percent of its R&D fund-
ing to build new technology and add capacity to the
architecture, but business pressures in 1986 caused the
shifting of these funds to other uses. The unit’s vision
for its architecture deteriorated, and by the late 1980s
developers would clone rather than share architecture
components, increasing the amount of code. Initially
this was seen as an increase in productivity,9 but by
1993 the time required to add features had tripled.2

The DLC group had also learned that it is possible
to put too much emphasis on the future. When the
project originally started, engineers with fresh mem-
ories of the digital switch collapse pushed for an archi-
tecture with broad capability. This proved burden-
some, with the product line taking too long to
develop, missing its market window. The results were
consistent with Robert Cooper’s analysis of success-
ful product introduction, which shows that sufficient
product value needs to be delivered to customers early
enough to establish initial product success.10

The DLC group learned from both experiences,
keeping its code growth steady and its architecture
clear. When the DLC group balanced future needs
with current needs, it was able to successfully add
large-scale functionality, to enter new markets, and

to increase product sales. One manager said that
instead of creating feature-rich products, they were
creating products with “just the features that make
you rich.” The group planned the evolution of the
architecture, tying new features to scheduled releases
over the course of two years. Also, engineers worked
collaboratively with customers and thus understood
not only the technical aspects of the features, but also
their market implications.

Establishing architectural rhythm
We were surprised how a consistent and pervasive

architectural rhythm—regular releases that help coor-
dinate actions and expectations—dramatically sim-
plified the process for all players. Figure 3 illustrates
how rhythm relates to the trade-offs made between
function and capability described earlier.

Rhythm ensures that all involved—including cus-
tomers, engineers, suppliers, managers, and execu-
tives—understand important issues and know their
own responsibilities.

In the processes of the DLC group, we found daily,
weekly, monthly, and lengthier rhythms. Planning,
development, testing, problem resolution, creation of
documentation, issuing of releases, and marketing all
had their own predictable rhythm, and this allowed
for synchronization and closure of tasks. Everyone
knew the milestones preceding a release and the reg-
ular intervals between them.

It was not always that way in the DLC group. Initially
managers did not place priority on completing features
on schedule or on weekly builds, and subsequently the
first release was delayed by several years. An internal
review pointed out the error in this, and a rhythm was
established—something one senior manager considered
“the best thing we did.” The product later had suc-
cessful sales growth and high customer ratings.

Figure 3. In the
case of architecture,
balancing short-term
results and far-reach-
ing vision is a lot
harder than it looks.
Rhythm helps
maintain a
profitable balance.

Region of
profitability

Switch
restructuring

First digital loop
carrier releases

Our case
study

Time

Too much
focus on

today's specific
features

Too much
focus on

tomorrow's
capabilities

Our interviewees pointed out too that there was a
period when some managers were less rigid about
maintaining schedules, allowing feature development
to proceed as “managed exceptions” to the rhythm.
This increased the number of releases per year and
greatly complicated management of the development
process, raising the possibility that important factors
would be overlooked. For example, unexpected
changes in content would invalidate earlier architec-
tural decisions, requiring last-minute changes in the
design of shared components. With increased sched-
ule pressure, many of these changes were “hacked”
rather than carefully integrated into the component’s
design. Finally, Nortel enforced rhythm and corrected
the problem.

Partnering with stakeholders
We added partnering as a critical principle when our

HP advisers told us that their group makes development
of partnering skills a first step when an internal organi-
zation requests product-line software reuse. When we
studied the DLC group, we saw that partnering was a
key element in delivering the value of Nortel’s architec-
ture. We uncovered examples of partnering with inter-
nal stakeholders, like users and developers of
architectures, and we saw that both official policy and
unwritten rules encouraged partnering and therefore the
reduction of architecture and product complexity.

Several of the engineers told us that when they or
other engineers had unilaterally changed a component
and broken the weekly compile, they raised the ire of
their bosses and co-workers. We also heard about com-
ponent owners who would not respond to the needs of
the users and were therefore sanctioned. Now, when
users wanted changes to a component, they negotiated
directly with the component owner. As a result, weekly
compiles rarely broke—even when a wide range of indi-
viduals in various locations had the ability to change
an architectural component. Crashes remained mini-
mal even when components were modified to meet the
requirements of new products.

Partnering also influences promotions and raises.
Many of the senior engineers, architects, and man-
agers told us stories of how, earlier in their careers,
when faced with a new requirement, they identified
other customers and crafted the component to address
the needs of more than one group. Once the compo-
nent achieved its dual purpose, the organization pro-
vided additional resources to maintain the component
and invited the component’s champion to be a key
member of the design team.

Engineers, too, were rewarded for productive use of
their personal networks and spheres of influence.
Managers found that those with effective networks were
better able to negotiate changes, and there was less man-
agement involvement and less cloning. Engineers, too,

were alert to business issues and trade-offs. They also
had a consistent understanding of how and when to ele-
vate to management conflicts between component own-
ers and engineers wanting changes.

Maintaining vision
Without a clear vision, something as abstract as a

software architecture cannot be effectively shared.
Developers and users must feel confident that they
know the general purpose of the designs and code and
that they can identify individuals who know the
details. Without a clear vision, software architecture
is meaningless and incapable of supporting a product
line. For example, a clear vision was first needed
before DLC engineers could request and negotiate
changes with component owners. All parties knew the
ultimate objectives and who was responsible for what.

In fact, we found that members of the DLC group
drew similar high-level representations of the archi-
tecture, and strongly identified components with the
individuals responsible for them. One manager said:
“You could create a chart with the faces of the own-
ers of all the major architecture components, and the
staff could fill in the names of components based upon
the faces.” Thus, the structure of the architecture par-
alleled the structure of the organization. This, we
believe, made the architecture more tangible and
helped maintain its integrity.5 This is not to say that
the organization’s structure was allowed to stagnate.
Engineers were regularly rotated, not only to handle
new responsibilities, but also to transfer technical
depth and breadth and to increase understanding of
the entire architecture.

The DLC group learned from other Nortel experi-
ences about the need for a shared architectural vision.
With market growth in the mid-1980s, the switch
architecture group hired many new engineers, but did
not sufficiently teach them the organization’s vision.
Many did not even know who to go to about specific
components, and as a result they began cloning, often
breaking off bigger chunks than they needed. The
increased architecture size and complexity itself forced
the hiring of more engineers, creating a vicious cycle.
The DLC group, however, hired at a slower pace, and
it introduced all new engineers to the architecture with
an informal apprenticeship.

Managing risks and opportunities
The DLC group managed technical and market risks

in a number of ways. At specific stages, for example,
it reviewed the architecture with internal and external
customers and stakeholders, tracking and testing the
assumptions underlying customer requirements. One
manager described these reviews this way: “We rou-
tinely decide to buy more information. The amount of
information we buy depends on the amount of risk we

Architecture
is most
effective in
delivering
value and
managing
complexity
when the six
critical
organizational
principles
are applied
in concert.

August 1997 53

54 Computer

perceive.” The process of buying information included
white-board meetings with component owners, mul-
tiple cycles of quick prototyping, and if necessary,
management or customer involvement.

After one review, a manager suspected that a
planned enhancement to an existing component had
in it hidden complexity. He stopped development and
ordered the component’s behavior analyzed using a
finite-state-machine model. The model showed that
the enhancement was several times more complicated
than originally envisioned, and the manager was able
to rework the enhancement and avoid major integra-
tion problems.

The DLC group also regularly prioritized risks,
focusing on the high-risk areas first. Risky areas were
tested with prototypes representing alternative techni-
cal approaches, and the chosen solution was the first to
be implemented, tested, and integrated. To avoid dis-
rupting the rhythm of releases, the group delivered
high-risk features in phases, over multiple releases.
Nortel reported that few architecture-related problems
made it through this process and that the company was
above the industry average for defect removal.

W ith the growing investment by both pub-
lic- and private-sector organizations in
software product-line architecture, man-

agers need to know the organizational factors affect-
ing its success. Nortel—a leading telecommunication
firm with large-scale, mission-critical experience—
has stretched the limits of software architecture,
reaped extraordinary success, and learned from its
inevitable mistakes. What it has learned and how it
is now applying those lessons hold important insights
for management.

Our advisers helped us develop six critical organi-
zational principles, and our study of Nortel confirmed
each of them. For Nortel, not adequately applying them
has had serious consequences, but when the company
has applied the principles, the results have been very
positive. We observed, however, that applying a prin-
ciple without discrimination—too much, too little, or
without focus—also caused negative consequences.
How does one strike a balance? Our conclusion is that
architecture is most effective in delivering value and
managing complexity when the six critical organiza-
tional principles are applied in concert.

We believe the richness of this approach comes
from learning how the principles interact across a
variety of organizations. Applied Expertise Inc., of
Arlington, Virginia, is now developing benchmark-
ing techniques to measure how and with what effect
organizations apply these principles. Applied
Expertise is using these techniques to benchmark sev-
eral companies that are recognized leaders in the
application of product-line architecture, including

AT&T, Hewlett-Packard, and Nortel. The techniques
hold additional promise for application in the fields
of software reuse and patterns. ❖

Acknowledgments
We thank Nortel for allowing us to conduct the

case study and for hosting the advisers’ workshop. We
also thank our sponsors, the Defense Advanced
Research Projects Agency’s STARS program and Office
of Secretary of Defense for funding the case study and
contributing to the production of this article.

We also acknowledge the contributions made by the
study’s advisers: Grady Booch, David J. Bristow, Robert
Charette, Patricia Cornwell, Glenn Dillard, Tom
Goodall, Ron Grace, Kwan Tse Huang, Conni
Marchewka, Mike Pait, Rick Peebles, Bob Savely, Robert
Sonneman, Bill Spotz, John Willison, and John Woodfin.

We also thank Rock Angier, Francois Coallier,
Michael Deutsch, Deborah Hamilton, Geoffrey
Moore, James W. Moore, David Preston, Stan Rifkin,
David Rine, Bill Saunders, and Allen Stennett for their
reviews, suggestions, and comments. Study team mem-
bers Marcia Carlyn and Carol Terry developed and
validated the research protocol. And program man-
agers John Foreman and Linda Brown helped shape
and guide this project for DARPA and OSD.

References
1. D. Garlan and D. Perry, “Introduction to the Special

Issue on Software Architecture,” IEEE Trans. on Soft-
ware Eng., Apr. 1995, pp. 269–274.

2. B. Ziegler, “What Really Happened at Northern Tele-
com,” Business Week, Aug. 9, 1993, pp. 27–28.

3. M. Griss, J. Favaro, and P. Walton, “Managerial and
Organizational Issues: Starting and Running a Software
Reuse Program,” Software Reusability, W. Schaefer, R.
Prieto-Diaz, and M. Matsumoto, eds., Ellis Horwood,
New York, 1994.

4. F. Fafchamps, “Organizational Factors and Reuse,”
IEEE Software, Sept. 1994, pp. 31–41.

5. C. Morris and C. Ferguson, “How Architecture Wins
Technology Wars,” Harvard Business Rev., Mar./Apr.
1993, pp. 86–96.

6. GAO, Case Study Evaluations, Transfer Paper 10.1.9, Gov-
ernmental Printing Office, Washington, D.C., Nov. 1990.

7. G. Booch, Object Solutions: Managing the Object-Oriented
Project, Addison Wesley, Reading, Mass., 1995, p. 29.

8. K. Weick, The Social Psychology of Organizing, Addi-
son Wesley, Reading, Mass., 1979, pp. 188–193.

9. P. Cashin, “BNR Remains at Forefront of Computing
Technology,” Telesis, July 1991, pp. 18–19, 74.

10. R. Cooper, “Debunking the Myths of New Product
Development,” Research Technology Management,
July/Aug. 1994, pp. 40–50.

Dave Dikel is the vice president and director of
research for Applied Expertise Inc. He is interested in
capturing and transferring engineering experience
using patterns and benchmarking, particularly in the
areas of software architecture and reuse. Dikel
received a BA in philosophy and physical science from
the University of California, San Diego. He is a mem-
ber of IEEE, ACM, ASQC, and the IEEE Software
Engineering Standards Committee’s Reuse Steering
Committee.

David Kane is a project executive and software engi-
neer at Applied Expertise Inc. His research interests
include patterns, management of risk, and the Inter-
net. Kane is currently enrolled at George Mason Uni-
versity in the MS program for software systems
engineering; he received a BS in computer science and
mathematics from Binghamton University. He is a
member of IEEE, ACM, and ASQC.

Steve Ornburn is an adviser for R&D effectiveness at
Nortel. He is interested in software engineering meth-
ods, including reuse, reverse engineering, and com-

ponent generators. He received an MS in computer
science from the Georgia Institute of Technology and
a BS in industrial engineering from Northwestern Uni-
versity. He is a member of IEEE and ACM.

William Loftus is president and technical director of
WPL Laboratories Inc. His research interests include
real-time and distributed systems, simulation, intranet
applications, and program generation. He received a
BS and an MS in computer science from Villanova
University. He is a member of IEEE and ACM.

Jim Wilson is president of Applied Expertise Inc. and
a software engineer. His research focuses on bench-
marking, software reuse, and Web databases. He
received a BA in American studies and physics from
Bucknell University and an MA in science and tech-
nology policy from George Washington University.

Contact Dikel at Applied Expertise Inc., 1925 North
Lynn Street, Suite 802, Arlington, VA 22209;
ddikel@aecorp.com. For more information on
Applied Expertise Inc., see http://www.aecorp.com.

August 1997 55

